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We consider problems of the optimal control of a linear system subject to ran- 
dom actions. We assume that the system’s phase coordinates are connected by 

nonconvex constraints which are necessarily also stochastic. We discuss deter- 
ministic problems equivalent to the stochastic ones mentioned. The unified 
approach to the problems formulated is based on the method for solving linear 

control systems, developed in [1] and modified in [2 - 41 for systems with con- 
straints. 

1, Let there be a control system 

dx / dt = A (t) x (t) + B (t) r~ (t) -t- 5 (t) (1.1) 

where X (t) is the n-dimensional phase coordinate vector, u is the r-dimensional con- 
trol vector, A (t), B (t) are known continuous matrices of appropriate dimension, E (t) 
is an n-dimensional vector-valued random process with specified probabilistic charac- 
teristics. The deterministic controls u (t) (elements u (-)) are chosen from a fixed 

weakly-compact convex set u of functions u (t) from the r-vector space ,&[t,, tp]. 
The control of the deterministic component 

(1.2) 

of the state vector 2 (t) of system (1.1) is effected by choosing u( .)E Li . 
Problem 1.1. Given an initial state z (&) = z@), a point da), a number 

a > 0, a continuous function Y (t) > 0 and an n-vector-valued function z”(t). From 
among ihe controls U( 0) E i.J find the u”(t) satisfying the condition tp’ - ta = min 
under the constraints 

Mp,IP (x (tp) - @))I < E 0.3) 

MpJQ (5 (t) - x’(t))1 > Y (t), t,Gtd tp (1.4) 

Here P, Q are known matrices of dimension p X n, q X n , respectively, PlbJ, 
p&z,] are nonnegative convex functions in the spaces R(p), R(q) (p, q < n), for 
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which we can find numbers a > 0, k > i so as to satisfy the conditions 

pi[ai] < a[1 + I(zjll’l, f F 1p 2 (1.5) 

(11 2 11 ’ h E I’d 1s t e UC 1 ean norm, M is the symbol for the mean). 
We can formulate as well a problem reciprocal to Problem 1.1. 

Problem 1. 2. On a given interval [t,, ta] find the control no(t) E e giving 
the condition a0 = min {a} under the constraints 5 (&) = &I, (1.3), (1.4). 

The problems formulated contain the nonconvex probabilistic constraints (1.4) on 

the phase coordinates and the convex probabilistic constraints (1.3) on the system’s 

terminal states. In particular, Problem 1.1 is, in fact, that of the shortest time 
to take the system from the position ~$1 e R@) to a probabilistic neighborhood of 
the point z(b) = Arc E H(P) in such a way that the phase constraint (1.4) is satisfied 

at each instant. 

2. Let us describe the solution of Problem 1.1, setting z”(t) 3 0. A consideration 
of the general case does not bring in any new essential aspects in the arguments. Let u, 

be the set of controls U( .) E L&t,, ta] taking system (1.1) from the point z(&) = 
~9) onto the manifold {z} C R(n) so that Mp,[Py (ta) - 21 < e. Here the ran- 
dom variable ?l (tg) and the deterministic vector z are connected by the relations 

‘P 

rl (t/3) = 1 x [&9 rl E(t) dr (2.1) 

t, 

z(P) - 2 + P?J (tp) = Px (tp) (2.2) 

It can be shown that set U, is convex and weakly closed. Then, the set u*= U n u1 

is convex and weakly closed. 
We denote the support functional of set C c L, by p(h( .) 1 C). On the basis of 

the generalized Hahn-Banach theorem [5] we obtain an expression for the support func- 

tional p @(a) 1 lJ*; of set U* 

p (h(e) I U*) = inf {p (h(s) + p’PH[t,,.l I U) - (p.z'P)) + (2.3) 

p(pl N) + p'PX[t,, t,J39} over all PER@) 

HIta, tl = Xft,, tlB (0, N = {z I Mp,IPq (tp) - zl < 8) 

Here Xlt, .&I is the normed fundamental matrix of system (1.1). (a-b) is the sca- 

lar product of vectors a and b. 
We consider a set P of deterministic vector-valued functions y (t) corresponding 

to the controls U( .) E U* such that 

p&Y (t)l = w4/ (t) + Qrl (01 > v (97 ta < t\< q3 (2.4) 

Here q (t), y (t) have been defined by equalities (1.2),(2.1). We can verify that 
p&l is‘s nonnegative closed convex function [6] in R(q). 
dom process E (t) has continuous kth-order moments. Then 
a finite function for every t E [t,, tB]. From the properties 
follows that pa[y (t)] can be represented in the form 

P3 [Y (91 =clyx&(kJ (0) - CL*1 = (I (0.Y (0) - P3* 1’ 

tie assume that the ran- 
p,[y (t)] is everywhere 
of convex functions it 

Z(t)]: t&t -,<ta (2.5) 
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where F” is the epigraph of the function Pa * [II adjoint to p&y]. The maximum in 
formula is indeed achieved since the function (2-y (t)) - Jo* and the set F* = 

epi p,*[il do not have common directions of recession (see [6]). 
By W we denote the set of vector-valued functions 1 (t) giving the maximum in 

(2.5) for the realizations y (v) E P. In what follows we shall assume that the epi- 
graph of function p&y] is a smooth set. Then, the vector-valued functions 1( .) E, W 
are continuous. We assume, moreover, that the set 1%’ forms a compactum in space 

C(Q), We consider the following auxiliary problem. 

Problem 2.1. Find the control u(e) E U*, t e It,, t,], ensuring rhe fulfill- 

ment of condition (2.4). 
I: is clear that the auxiliary problem has a solution if and only if there exists I( .) E 

W satisfying the inequality 

(l (t)*y (t)) - ps”fE @)I > v ($1, t E It,. t,f (2.i;) 

for any control U( .) E u*. Then the condition for the solvability of the system of 

inequalities (2.6) for some I(*) e J%’ is equivalent to the condition for the solvabi- 

lity of the generalized moment problem 

t 

s 2’ (t) QfI it, zf u (z) ck > 1’ (t) QX it, tcJ da) +- ps* 12 (t)l + Y (t) (2.7) 

ta 

l? s h’(t)u(t)dt,Cp(h(.)lU) for all h(.)ELs (2.8) 

15% 

Applying the procedure described in [2 - 41 and passing to the Stieltjes integral, the 

necessary and sufficient condition for the solvability of problem (2.7), (2.8) is written 
in the form ‘B 

minh (t) { s P ( i’(t) QH [t, %I dh (t) I U*) + (2.9) 
If 

$3 
1 Z’ft)QXjt, ~~lz’.id.\(t)--~~eY(i)dA(t)-tS8ps*[l(l)ld.l(l)}~o 
f , ‘a “a 

Here the minimum is taken over all nondecreasing functions of unit variation. Then, 
making use of formula (2.3), we get that the required necessary and sufficient con- 
dition for the solvability of the auxiliary Problem 2.1 is the fulfillment of the inequal- 

ity % 

mw(t) minh (t) min, p 
{(S 

l’(t) QH [t, ~1 dA((t) + p’PH [c,T] [U + 

Q (P I w T- (P.z(fi9,, P'PX lq3, t”lty) + 
1 

(2.10) 

‘P 
j Z'(t) QX it, t,]x@)dA (t)- j ~(~)~~~(~) - j Ps* IZ @)ldi?+ (3} > 0 

over all tal( .) fz W, 11 p 11 f Var A (b; = 1. 

kz 

We note that &*[,?I is continuous on set W ; therefore, the last integral in (2.9), 

(2.10) has meaning. 
Passing to the adjoint system, we can rewrite condition (2.10) as 
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9 f a 
(s (tp) .d:‘“‘) - s Y (t) dA (t) - 

fa 

s ps* [z(t)1 dA ct,) > 0 
ta 

over a11 I(*) E W, JI p Ii + Var A (t) = 1, where s (r) is the solution of the ad- 

joint system in the distributions 

ds @zf 
dz =-s(+4(Z)-z~(t)Qd* (2.12) 

with boundary conditions s (ta) = p’P (d A (t) I d t is the generalized derivative 

of the function A (t)). 
Let $6’ be the smallest instant for which inequality (2.11) is fulfilled, and let is(t), 

A” (t), p. be the extremal elements of (2.11) i. e, 

P (a;$’ ) B ( ’ > I u + yo I 4 - (PO * z(P)) + (so (43) a;‘“‘)- (2.13) 
0 

5 y (t) dh” (t) - 1 ps* [ZJJ @)I &Y(t) = 0 
tff ‘a 

Then ta” - t, is the optimal time for Problem 1.1. Here the optimal control u”(t) 

satisfies the maximum principle 

‘PO ‘PO 

1 so (z) B (z) u” (z) dz’ = mau j s”(z) B (z) u (z) dr (2.14) 
f’z cc 

while the deterministic component y”(t) of the optimal trajectory satisfies the mini- 

mum principle ‘PO 

0 = 1 (lo’ (t) y” (f) - ps* [I, (t)]-v (t)) dAO @))= (2.15) 
t, 

fkO 

min 
Pa IV Wl>,v (2) 

\ (pa Iv @>I - y (t>> dAW 
t, 

The optimal aiming point z” satisfies the maximum condition 

The assertions made above can be consolidated into the following theorem, 

Theorem. The necessary and sufficient condition for the solvability of Problem 

1.1 is the fulfillment of condition (2.10) or (2.11). The optimal control u’(1) satisfies 
the maximum principle (2.14). The deterministic component y”(t) of the optimal 
trajectory satisfies the minimum condition (2.15). and the aiming point zc satisfies 
condition (2.16). 

Notes. 1”. If epi p3 [y] is not a smooth set, then the I (t) in (2.5) can turn out to 

be discontinuous. Then the integrals of form 
‘P 

a 
’ 1’ (t) QH [tp, t) dA (t) 

fa 
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must be undestood in the Radon sense J?]. 

2”. Under the condition 

Pz IY (% + Qr Ml = JJ !/ (t) + 0’1 (tl IP 

the function Pa JY (t)J takes the form 

~3 JY (Gl = MP, Iy (t) / @I (t)l = JJ Y (t) -t QJfrt (4 II z i Ml/ Qrl 0) I!' 

for every t E tf,, tsl , while the adjoint function 

pa* JL (t)J = 1/h 11 I (tj jp - 1' (t).QMq (t) - M \I Qv tt) (1 2 

In particular, if M&I (t) G 0, then 

P& 011 = II Y (1) ii” + M Ii Qrl, (t) /I2 

ps* [l (Gl = I/J II 1 (4 l/2 - M II Qrl @I II2 

3*. By applying arguments analogous to those in [4] we can show that if o3 [.$it)J> 
Y (t) for t E [tl, tzJ c Jr,, ‘a], then the condition AS (t) E const for t E [tl, t,] is ful- 
filled for the extremal element Ati (1). 

4”. If the epigraph of function p3 [y] is a smooth set and A0 (t) has a jump at 

f = t, ett,, tp] , then the condition 

lo’ (ti) QB (u'" (tl + u) - u" (tl - 0)) < 0 (2.17) 

is necessarily satisfied. In the case p3 JyJ = JJ yJJ2 the last condition can be rewritten as 

Y “(Q (ti’” (tl + 0) - ii’” (tx - 0)) < 0 (2.18) 

Conditions (2.17),(2.18) enable us to pick out the points at which the function A” (Q 

is suspected of having a jump. 

Problem 1.2, being reciprocal to Problem 1.1, can be solved from the condition of 
solvability of the auxiliary problem. 

5, Let us discuss the solution of Problem 1.1, assuming that 

In the given case inequalities (1.3). (1.4) are rewritten as 

(3.2) 

t f 
3 (t) = x it, t,] da) Jr s H [t, z] u (T) dr + 1 x [t, z] ME (z.) dz 

t a 1, 

012 = fif II PY (tpl - Pie ftf$f l12r %‘ft) = i&f II @I (t) - MQq (t) /I2 

Here ox2 is the trace of the covariance matrix of the random vector Pq (te), o:(t) is 

the trace of the covariance matrix of the random process Qrl (t) [8]. We introduce into 
consideration the deterministic system 

6(t) = A (t) 6 (t) + f? (tb (t) + ‘i(t), 5 (0 = ME ltt 
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and formulate the following problem. 
Problem 3.1. Given the initial position 6 (tcL) = a~@)$ the point x(@, the num- 

ber e1 , and the continuous function ~~(1) > 0. Find the control u”(t) E U rendering 
the condition rp” - t, = min under the constraints 

II P (6 (tp) - W 11’ < ~1, II Q* (t) II' a W)r 'a<td +. 

From (3.2) we see that under condition (3.1) the solution of Problem 1.1 can be ob- 

tained as the solution of Problem 3.1 if we assume et = E - or%, vt(t) = v (t) - 
(J,~ (t). Thus, Problem 1.1 is reduced to the deterministic Problem 3.1. The necessary 

and sufficient condition for the solvabilitv of these problems is the fulfillment of the 
inequality ‘a 

max2 (t) minh (t) min, p 
I 1s 

Z’(t) QH [t, ~1 dh (t) + p’PH [tp, ~11 U) + (3.3) 

P (P ! 4 - (P*Z(@) + PTPX [437 &I da) + 
‘P ‘P 
1 Z’(t) QX [t, t,] Ic@)dh (t) + 1 Z’(t) QMq (t) dA (t) - 
ta tcI 
tfi LB 

s VI (t) dh (t) - -+ 1 I’ (t) z (t) CL2 (t)} > 0 

over ali” Z(e) E W, 11 p 11 t Var A (t) = 1. 
This condition can also be obtained from inequality (2.10) with 

P&Y (t>l = II Y (t) + QJfrl (t) II2 + GW 
Passing to the adjoint system (2.12). condition (3.3) can be rewritten as 

maxi (t)mb (t) min, 
1 

P (3 (.> B Cm) I u) -I- P (P I NJ - (P~z(@) + 

‘? ‘P 
(s@,)*z@)) - 

s 
vl(t)dA(t)- + \ Z’(t)Z(t)dh(t) + 

t a kc 
‘P 

(3.4) 

s Z’ (t) QMq (0 dA W] > 0 
ta 

overall Z(-)~W,IIpII+Varil(t)=l. 
As usual the optimal control k’ (t) is determined from the maximum principle(2.14) 

on the solution so (2) of the adjoint system (2.12) rendering the extremum of function- 
al (3.4). The optimal trajectory q>“(t) satisfies the minimum condition 

$3.. 

o= 
s 

(la (t) QW (t) - + I,’ (t) Z,, (t) - VI (t)) dA” (t) = 

kt 

‘P” 
3 

min s (II Qf' W II2 - vl(t))dA"(t) 
1149 V)ll*>~t (t) 

k7 

the aiming point ~‘satisfies condition (2.16). 
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4. Example, Let us consider the time-optimal problem for the stochastic system 
(w (t) is a Wiener process, MU (t) E 0, Mo2 (t) = t) 

ds, = s,dt, ax, = u (t) dr + do,l u 1 < 1 

51 (0) = 1, x2 (0) = 0, .1(P) = --I, z2p = 0,2 

under the coordinate constraints 

x II p (z ($3) - @)) /p < (0. 1)2 i l/3tp3 + l/4 t, 

M 1) Qz (4 II” Z 7/~s + l/3t3 + %t 

This problem is equivalent to the time-optimal problem for the deterministic system 

6,’ = 62, 6,’ = U, I EL I < 1 (4.1) 

6, (0) = 1, 6, (0) = 0, *.1(b) = -1, et,(P) = 0.2 

under the coordinate constraints 

I] p (6 ($3) - II+(P)) j” < (0. I)‘, 11 (8 tt) ii” > ‘/16 (4.2) 

Condition (3.3) for the deterministic problem (4. l), (4.2) takes the form 
t,O b ‘PO ‘PO _ . 

~riax~(,) min1I(tj minp ills 11 (f) (f - t) dA (t) -i- 
s 
’ i2 (t) + dh (t) -- 

(4.3) 
0 0 : 

Pl(‘po-T)+P2$ rlz+“pl-o.lp2~-o.1 I/pl”+p2z+ 

I 

‘P’ 

I 

’ 11 (f) dA (1) - 

0 
‘pO 

$ ’ (11’ (t) + la2 (t)) dA (ti - + Var A (t) 

s 

= o 

0 

over all a(.) E W, 1) p II i- Var A (t) = 2. 
Solving problem (4.3). we obtain 

/“O = 0, I-‘20 = 1 

The minimal function h” (t) = so (t) B (t) is determined by the equalities 

IlO (!) = + , *<‘t<” r/5- 
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h” (t) =I: 

The optimal control is determined from the maximum principle (2.14) 

up (t) = -1, o<tg 16 

u” (t) = 1, V’iT<t<21/T 

The optimal trajectory touches the constraints for tr = v” 1 2, & = 2 t/z- 6q z- 

The authors are deeply grateful to A. B. Kurzhanskii and M. I. Gusev for useful discus- 

sions of the paper. 
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We derive sufficient conditions for the Z-evasion of contact in a linear differ- 
ential game. The paper adjoins the investigations in fl - 51. 

1. We consider the problem of evasion of contact [ 1, 21 in a linear differential game 
[33 given by the equation 

i = cz + f (u, ?J), u E p, VEQ (1.1) 

Here z is a vector in the n-dimensional Euclidean space R", c is a constant nth- 
order square matrix, u is the pursuit parameter, 27 is the escape parameter, P and Q 
are given compact subsets from Rn, f (u, v) is a function continuous in all its varia- 

bles on P x Q . The terminal set M of game (1.1) is assumed to be a linearsubspace 
of space R”. 


